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Abstract

It is well known that static models for credit risk fail to meet the increasing demand for hedging credit

derivatives since they fail to track the credit risk change of a structured portfolio over multiple time

periods. In this paper, we propose a dynamic credit risk model based on asset growth rate. The model

can be used to dynamically analyse and price mainstream credit derivatives, is easy to calibrate, and

captures well both bullish and bearish credit market conditions. We provide two alternative candidates

for default conditions and we evaluate them. We illustrate our model for a CDO-type contract. As

a dynamic structural model, our approach does not rely on certain type of distributions. However,

further extensions can be made to assess the effects of exogenous factors such as pairwise correlation

and interest rate. Following the recent market slide and the ongoing credit crunch, we believe that

an “old school”-type intuiyive approach will be valuable for market practitioners who are increasingly

focusing on new routes to mitigate and hedge risk exposure.

JEL Classifications: G01, G13, G17.

Keywords: Dynamic credit risk models, default-able bond prices, multi-step Monte Carlo simulations.

a Faculty of Finance, Cass Business School, City University, 106 Bunhill Row, London, EC1Y 8TZ,

UK; tel.: +44 (0) 207 040 8973, email: j.hatgioannides@city.ac.uk
b Faculty of Finance, Cass Business School, City University, 106 Bunhill Row, London, EC1Y 8TZ,

UK; email: liu.yang.1@city.ac.uk

© qass.org.uk



1 Introduction

The study of credit risk and the valuation/hedging of credit derivatives are one of

the most popular and controversial issues that concern the entire financial industry.

Increases of defaults and bankruptcies during the recent credit crunch has stipulated a

heated debate about the adequacy of the existing pricing and hedging methodologies

for portfolios of credit derivatives.

The main objective of this work is to propose and evaluate a treatable dynamic

framework that addresses many of the deficiencies of the standard market model.

The structure of the paper is as follows. Section 2 provides an overview of the

current mainstream approaches in the credit risk market. Section 3 describes our main

contribution, that is a dynamic credit risk model based on asset growth rate. Section

4 illustrates the implemantation and calibration of our framework on a Collateralised

Debt Obligation (CDO) contract and discusses possible extensions of our work. Finally,

Section 5 concludes the paper.

2 Overview of Credit Models

We start by reviewing current mainstream approaches in the credit risk market.

2.1 Static Copula Models

The current standard model, also known as the Gaussian copula model, starts with a

simple one-factor specification of the change in the asset value of the reference company

and in turn, determines the firm’s time to default.

This approach was originally introduced by Vasicek (1991), Li (2000) and recently

developed by Laurent and Gregory (2005). In esence, the default probability over the

whole life of the contract is determined by the normally distributed asset value, in which

case, if the asset value is high then the probability of default is low, and verse versa.

Default is defined as the first time the asset value falls down cross a predefined value

barrier.1

The model assumes a constant hazard rate and ignores the change of probability

of default over the whole time period. Considering only the loss distribution, many

alternative copula and distribution functions to Gaussian copula have been suggested,2

1Normally the debt value of the company, or the face value in case of a bond.
2See Hull and White (2004), Burtschell, Gregory, and Laurent (2009), Guegan and Houdain (2005),

and Kalemanova, Schmid and Werner (2007) for detailed discussions on copula functions.
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including: the student t-copula, the double t-copula, the Archimedian copula, the Clay-

ton copula, the Marshall Olkin copula, and distributions like Normal Inverse Gaussian

and Variance Gamma.

This type of model is, in general, static due to not able to describe how the default

environment evolves. However, the following two insights are worth keeping:

1. The probability of default (PD), which is conditioned on a market momentum of

 , is related to the default barrier  with a normal distribution function:

( ) = Φ

Ã
 −  · p
1− 2

!
 (1)

2. The relationship between the default probability and the asset value is expressed

as:

 = Φ−1(1− ) (2)

2.2 Prior Dynamic Models

In order to fit and analyse data covering multiple time horizons, and for more accu-

rate valuation of derivatives on credit related financial contracts, dynamic models were

introduced. We first provide a quick review of such attempts before looking into the

details of a specific model in the next subsection.

Structural Models

This approach was origined by Black and Scholes (1973) and Merton (1973), and re-

cently extended by Albanese et al. (2006), Hull, Predescu and White (2009), and

Baxter (2006). The basic model is similar to the Gaussian copula model. Correlated

asset values are constructed by a univariate drift factor and an idiosyncratic stochastic

process for every asset.

Anson et al. (2004) have shown that most research on credit derivatives with a

structural type of model analyses the instrument like an option. And default is specified

as when the value of the asset crosses a predefined barrier.

Structural models have the advantage that they are based on market observables

and have sound economic underpinnings. But their main drawback is that they are

generally hard to calibrate and computational expensive.
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Reduced-form Models

This type of models (also called the intensity models) focuses on modeling the correlated

evolving processes for the default probability of the referenced companies. Pioneers

of this approach include Jarrow and Turnbull (1995), Lando (1998), and Duffie and

Singleton (1999).

In general, it is hard for reduced form models to fit market data well because of their

weak link to market variables. Most importantly, the widely used Poisson process is a

counting process which means that the counter increases as time goes by, in this case,

the variance of correlation and default probability is limited. Hence, many researchers

add jumps in the hazard rate process to describe the ‘surprises’, examples can be found

in Zhou (1997), Duffie and Singleton (1999), and Duffie and Garleanu (2001).

Most models consist of a self-evolving component, a market contingent component

and/or an industry contingent component. The Duffie and Garleanu (2001) model, for

example, has all three, and each of the components follows a process led by a diffusion

and a jump factor.

Recent extensions and models of this approach can be found in Graziano and Rogers

(2009), Hull and White (2008), Chapovsky, Rennie and Tavares (2007), and Hurd and

Kuznetsov (2006).

Stochastic Loss Distribution Approach

This methodology was first originated by Heath, Jarrow and Morton (1992), Jarrow

and Turnbull (1995), and Jarrow, Lando and Turnbull (1997). Distinguishing this type

of models as an individual category is controversial3 because these frameworks focus on

the probability of the losses of portfolio to take place or reach some level in the future.

Thus, this approach is also referred to as the “top down” approach.

Recent research includes an extension of Heath, Jarrow and Morton (1992) with a

loss deduction assumption in Sidenius, Piterbarg and Andersen (2008). Bennani (2005)

assumed that the instantaneous loss is a percentage of the remaining principal. Errais,

Giesecke and Goldberg (2006) suggest a model of default probability with jumps, while

Longstaff and Rajan (2006) suggest that it is the loss that follows a jump process and

different types of jumps are tested.

Meanwhile, Markov chains are widely adopted in this literature. Schonbucher (2006)

and Walker (2009) considered the evolution of loss distribution in a Markov loss model.

3See Anson et al. (2004) and Choudhry (2005).
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2.3 Duffie-Singleton Discount Rate Approach

Duffie and Singleton (1999) proposed a Reduced Form model characterizing the default

exogenously by a jump process. The event of default is led by a hazard rate and the

losses at default is parameterized as a fractional reduction in pre-default market value.

Suppose we have a corporate bond paying  at maturity time  , denote the hazard

rate at time 0 ≤  ≤  by  and the expected fractional loss at time  by . Under

a risk-neutral environment,  stands for the ‘mean-loss rate’, thus if the risk free

interest rate  is replaced by a adjusted short rate , where  =  + , the market

value of this bond at time zero is then given by

0 = 

0

h
−

 
0


i
 (3)

where  is the risk-neutral martingale measure.

As the mean-loss rate  does not depend on the bond value, if  is chosen

carefully, standard term-structurer default-free debt models are directly applicable to

default-able debts by replacing the risk-free rate  by .

Under this set up, let us denote the unit recovery at time +1 by +1. It is natural

that the contract value at time  consists of two parts: (i)  · − · 
 (+1) for the

event of default and (ii) (1−) · − ·
 (+1) as the bond value continuous to evolve

at time +1 in case of no default. Mathematically, the bond value at time  is expressed

as

 = 
−

 (+1) + (1− )
−

 (+1) (4)

Meanwhile, as the unit recovery of market value at time  + 1 is the difference

between real market value at time + 1 and the expected fractional loss at time , i.e.



 (+1) = (1− )


 (+1) (5)

Substituting equation (5) into equation (4), we can rewrite equation (4) as

 = (1− )
−

 (+1) (6)

The default adjusted discount factor − at time  is given by

− = (1− )
− (7)

Using the well known result that for a small number ,  is approximately equal to

33

QASS, Vol. 4 (2), 2010, 29-48

© qass.org.uk



1 + , similarly if the contract time is observed in small length, we can approximately

have: 
∼=  + . Now if one recursively solves equation (6) for the whole time

interval, it is easy to have:

 = 

 (

−−1
= ) (8)

And thus the financial contract is priced.

The authors then derived fair prices of securities which are prone to default risk. In

summary, this approach provides a default-able version of Heath, Jarrow and Morton

(1992) model. The authors concluded that their framework is not suitable when dealing

with non-callable bonds, because  and  must work together as the ‘mean-loss rate’

in this model and cannot be identified separately from data of default-able bond prices

alone.

We follow the Duffie and Singleton (1999) approach and take this work as a pre-

cursor of our framework, as a main advantage of this approach is that it is possible to

directly calibrate model variables to observable market prices such as corporate bonds.

Further, it is possible to parameterize  directly as it is exogenous. However, the

downside of this type of model is, as the loss is priced with a default adjusted ‘risk free’

rate, the final value is expressed as an exponential function and thus the model is not

suitable for pricing financial contracts like CDS which has no payoff at maturity.

3 Dynamic Growth Rate Model

In this section, we propose a dynamic credit risk model based on asset growth rate.

The model can be used to analyse and price all mainstream credit derivatives overtime.

Further, it is easy to calibrate and captures well both bullish and bearish market move-

ments. Finally, this growth rate model considers the value evolving process forwardly

from time 0, thus only an initial condition is needed and zero face-value instruments

are covered as well. We provide two approaches of default conditions for the model and

a detailed robust test is given in later sections.

3.1 Notations

Unless specified, we use the following notations for the remainder of this paper.

 : contract maturity.

0 ≤  ≤  : a general time before maturity.
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 : number of referenced companies.

0 ≤  ≤  :  company in the portfolio.

() : number of cumulative defaults at time .


 : cumulative loss on the portfolio at time .

 : risk-free interest rate.

 : default-adjusted asset growth rate for company .

 : coupon rate of company  Also defined as  for all underlying bonds in a homoge-

neous portfolio.

 : default-adjusted unit asset value at time .

() : default probability of company  at time .

  : time of default for company .

 : premium spread.

() : asset value of company  at time .

 : default threshold for company .

() : stochastic short growth rate of company  at time .

3.2 Model Setup

Suppose we have a portfolio of default-able zero coupon bonds and assume that these

constitute the only debt of the referenced names. Furthermore, assume that the portfo-

lio is homogeneous, each bond accrues an interest rate of +, which means the discrete

corresponding asset growth factor over a short time interval is: (+).

As the asset value evolves until maturity  , the bond erases its market value if its

(time ) growth rate is lower than the risk-free Treasury Bill interest rate. In other

words, the bond is down graded to junk in this case, and a credit event is triggered.

We assume the growth rate of a referenced company consists of two components:

the risk-free rate  and a stochastic short growth rate . The latter follows an Ornstein-

Uhlenbeck type process:

 = −+  (9)
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where  is the drift and  is volatility,  is a Brownian Motion. Solving equation (9)

we have:

() = (0)− + 

Z 

0

−(−) (10)

Assume that the time zero value of the underlying bond is 1, thus the asset value

growth for time interval (0 ) given by the growth rate is: (++()) where () is

given by the equation above. Then the value of default can be calculated and thus the

probability of default at each time  before maturity is found.

We illustrate how to find () with a simple numerical example: Say that the yield of

a risk-free, five-year, zero coupon Treasury bond paying £100 at maturity is 3%. Also,

the yield of a zero coupon, zero recovery corporate bond with the same face value and

maturity is 4%. Then, at present, the Treasury bond worths: £100−003×5 = 86071 and

the corporate £100−004×5 = 81873. The value of default is their difference, £4198.

In case of default, the corporate bond will cause a loss of full face value of £100 at

maturity, so the risk-neutral expected loss from this default is simply: 100−003×5(0).

Hence,

100−003×5(0) = 100−003×5 − 100−004×5

and thus

(0) =
−003×5 − −004×5

−003×5


At the end of the first year, the value of the Treasury bond is increased with the

risk-free rate 3% to: $86071 × 003 = 88692. As for the corporate bond, if the

growth of first year is lower than the promised 4%, say, 3.5% (this can be seen as

an addition of the 3% risk-free rate and (1) = 05%), the value of the bond is now:

$81873× 0035 = 84789

Ideally, one would expect the corporate bond to grow with an average rate of 4%

every year during the five years and make it to the value of £100 at maturity, so the

first year target would be: $81873× 004 = 85214. Thus, with the value of £84.789,

it is more difficult to reach £100 and therefore a larger PD is obtained:

100−003×4(1) = 100−003×4 − 100−004×50035

=⇒ 88692(1) = 88692− 84789
=⇒ (1) = 0044
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It follows that the probability of default is given by

() =
−(−) − −(+)+(+())

−(−)
= 1− ()−  (11)

It is obvious that at any generic time  if  ()   the derived PD will be based on

the performance of the bond during the first  years. On the contrary, if  ()  , the

corporate bond is doing well for the period (0 ], and to obtain the probability for the

rest of (  ) years, one may simply focus on the promised yield +  and the maturity

time. So the probability of default is now defined as

() =
−(−) − −(+)(−)

−(−)
= 1− (−) for  () ≥ 

Continue with our example, for any growth  (1) ≥  = 1% by the end of the first

year, we have the default probability of the corporate bond seen at time  = 1for the

remaining 5− 1 = 4 years:

(1) =
88692− 85214

88692
= 00392

In short, the default probability with respect to the time dependent growth rate

 () is given by

() =

(
 () ≥  : −(−)−−(+)(−)

−(−) = 1− (−)

 ()   : −(−)−−(−)−+()
−(−) = 1− ()−

)
 (12)

3.3 Trigger of Default

In this section we consider two alternative conditions of default. Subsequently, we

compare our findings.

3.3.1 Growth Rate Factor

Having obtained the default-adjusted asset growth rate from the previous section, we

observe that according to our assumptions, the asset growth is limited by a lower rate of

, in other words, the variable  () has to stay above 0 for the company to survive until

time . This implies that the unit value at time  is −(+)+(+0) = −(+) Clearly,

the default condition can be specified as:  ()  0 or  ()  0 for a homogeneous

portfolio.

Continuing the numerical example of the previous section, the probability of default

37

QASS, Vol. 4 (2), 2010, 29-48

© qass.org.uk



at  (1) = 0 is

(1) =
88692−−003×4 −100−004×5+003

88692
= 00488

For any  (1)  0, the probability (1) becomes larger than 0.0488.

In this setting, a practitioner does not need to worry about the time dependent

default probability given by equation (12), as the default is simply triggered when  ()

falls below 0.

3.3.2 Asset Value Approach

As in Li (2000) and Kalemanova, Schmid and Werner (2007), the asset value approach

implies that the default is triggered if the asset value falls below the threshold. The

barrier is given by equation (2) using a static probability of default from a credit curve,

i.e.

 = Φ−1(1− ) (13)

The variable  is defined as the probability of default over the whole time interval in

the market model. Meanwhile the threshold  is normally considered as a constant for

CDO type of contracts.4 As for our example given above,  is obtained with  () = 0

where  = 00488, thus,  = 16566.

For the time dependent case, we can have a time  ‘asset value’ using equation (2)

as

() = Φ−1(1− ()) (14)

Use the same value of  (1) = 05% and (1) = 0044 that we had earlier in our example,

(1) = 1706. So the asset survives until ()  1706.

In this case, a default is triggered if value () falls across the default barrier ,

i.e. ()   or

Φ−1(1− ())  Φ−1(1− ) (15)

As the Φ−1 function decreases in value when  () becomes higher, to hold true that

()   one will require  ()  , then apply equation (12) to obtain from equation

(15) that  ()  0

4For details see Anson et al. (2004), Bluhm and Overbeck (2007), and Loffler and Posch (2007).
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3.3.3 Robust Test

Following the previous discussion, we summarise the two conditions of default in Exhibit

1 below:

Exhibit 1: Model calibration procedure of two approaches.

Model engine generator of  ()| {z }
. &

The time   () and  at barrier | {z } Default if ()  0

Asset value from survival function:

 = Φ−1(1− ) with given () and | {z }
Default if ()  

In general, the Growth Factor approach shown on the right-hand side of Exhibit

1 is easier to program and superior in computation time when simulating due to less

calculations. Meanwhile, if the practitioner needs to observe the change in time-value

and carry out portfolio or match to name hedging strategies based on asset value, the

Asset Value approach is much more suitable because it works well with alternative asset

value models. Based on the simulation results in hand one may easily plug in a different

barrier and obtain the estimated defaults of the simulated data.

To examine the convergence and robust results on above discussed approaches, we

apply them both with multi-step Monte Carlo simulation, using the same data set

generated by the random variable generating engine, the simulated default is shown in

the Figure 1.

Figure 1

Simulated Trial Default Times
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It is obvious that both approaches provide identical results, in other words, the same

company defaults/survives at the same time in both approaches. Mathematically, we

have:

∵ ()   i.e. Φ−1(1− ())  Φ−1(1− ) ∴  ()  

∴ apply equation (11) 1− ()−  1− − ∴  ()  0

Figure 2 shows the computation time of the two default trigger approaches.5

Figure 2

Computation Time
(seconds)

vs. Number of Simulations

Clearly, the asset value approach is more computational expensive; however, this

approach is more convenient when considering a time dependent underlying asset value.

Thus the time cost is bearable when calculating hedging parameters of the underlying

portfolio.

4 Model Implementation: Valuation of a CDO

In this section we implement and calibrate our model on a collateralized debt obligation

(CDO) contract.

5The test is performed under Microsoft Excel VBA environment, the computer we used has Intel

P4 3.6GHz CPU with 1G Memory.
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4.1 The Simulation Procedure

In the occurrence of a credit event, we follow the Asset Value approach to produce the

following steps in our simulation process.

1. Generate value () using equation (9) and (10) for each underlying company over

the whole contract time.

2. Calculate the default adjusted asset value growth factor  for each time 0 ≤  ≤
 .

3. Calculate the time dependent default probability from equation (11) for all com-

panies over the whole time period.

4. Calculate the expected time  asset value for all companies using the default

probability from the above step.

5. Calculate the default barrier using equation (13).

6. Compare the expected asset value, the default barrier and determine credit trigger

using equation (15). Defaulted companies are knocked out for the remaining

contract life.

7. Calculate the cumulative loss from default. The recovery rate is chosen to be 40%

inline with market standards.

8. For each tranche, the loss at each time is given by the comparison between tranche

size and the tranched loss. The fair spread is given by the component that equates

the tranche loss with the tranche notional.

9. Repeat the above steps for a large number of times and calculate the average fair

spread from all trials.

4.2 Numerical Results

The CDO-type contract we consider is the 5-year iTraxx Europe. Total underlying

names is 125, and the six structured tranches are sized: 0-3%, 3-6%, 6-9%, 9-12%, 12-

22%, and 22-100%. The payment days are set quarterly and the recovery rate is fixed

to 40%.

Bearing in mind the on going tsunami in credit markets, we use two sets of market

data, one bearish and a bullish. The first data set is the iTraxx Series5 which started
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on 20th September 2006 and ends on 20th December 2011. The market quote we use

is recorded on the 31th of January of 2007,6 with compound spread 23bps. The second

data set is the latest on-the-run iTraxx Series8 version 1 with contract maturity the

20th December 2012. The quote date is 30st January 2008 with compound spread

123.75bps.

The interest rates from the Bank of England (BoE) are 5.5% and 5% respectively,

and the  factors (volatilities of the average CDO spreads in the datadase) are 0.0031

and 0.0072. The numerical results are summarised in Tables 1 and 2.

Table 1: Numerical results for

iTraxx tranches on 31/1/2007.

Tranche Market Growth Rate

0% - 3% 10.34% 17.03%

3% - 6% 41.59 bps 64.36 bps

6% - 9% 11.95 bps 20.14 bps

9% - 12% 5.6 bps 2.7 bps

12% - 22% 2 bps 0.85 bps

Absolute Error 26.91 bps

Table 2: Numerical results for

iTraxx tranches on 30/1/2008.

Tranche Market Growth Rate

0% - 3% 30.98% 37.03%

3% - 6% 316.9 bps 360.15 bps

6% - 9% 212.4 bps 247.31 bps

9% - 12% 140.0 bps 172.64 bps

12% - 22% 73.6 bps 85.28 bps

Absolute Error 22.48 bps

The bearish market simulation shown in Table 1 produce an almost 50% discrepancy

to market data. Given that our absolute error is 26.91 bps,7 we believe that the main

reason for the large percentage differences is that for the 9%-12% and 12%-22% tranches

the market spreads are low, thus the 1.15 bps error (2 bps-0.85 bps) for the 12%-22%

tranche produces 57.5% error.

6All data is quoted from Markit and Reuters’ CDS Views. Note that different contributors may

submit different quotes.
7Note that the absolute error is the sum of the absolute difference between simulation outcome and

market data excluding equity tranche, as according to market rules, equity tranches spread is locked

to 500bps.
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As for the intense post sub-prime market period, we can see from Table 2 that the

simulated spreads are within a percentage difference of 15% compared to the market

spreads. However, in tandem with Table 1, the differences are more pronounced for the

last two tranches. The absolute error we observe here from each simulation outcome is

about 5 times that of a good market, but if one considers the tranche spread level in

2008 compared with data from a year earlier being far more expensive (e.g. tranche 3%-

6% spread is 8 times higher and the super senior tranche is 36 times more expensive),

we reckon that our simulated results are still acceptable.

We may conclude that the growth rate model is useful in capturing both easy and

intense market movements. Furthermore, our results have shown that the multi-step

Monte Carlo simulation procedure is very productive when dealing with structural credit

models.

4.3 Extensions

The assumptions in our simulation procedure were in accordance to the market stan-

dard. However, as the model is implemented with a multi-step simulation, ‘richer’

assumptions can also be added in case one needs to investigate a more complex market

structure. Typical examples are given next.

4.3.1 Dynamic Recovery Rate

Although, the market practice is to set a uniform recovery rate  to all classes of credit

derivatives, recent research explains the benefits of stochastic recovery rates in better

fitting reality.

Yu (2003) and Herkommer (2007) have shown that the recovery rate can not be

disassociated from default probability. Moreover, Hu and Perraudin (2002), and Altman

et al. (2005) suggest that there is a negative correlation between the default probability

and the recovery rate.

In our dynamic asset growth rate model, for each observed time , a negative corre-

lation between the derived default probability and the recovery rate is implied by our

default conditions. Thus, our framework is compatible with recent empirical findings

regarding the impact of the recovery rate.

4.3.2 Match to Name Correlation

According to reviews by Deacon (2003) and Anson et al. (2004) most distribution

and copula based credit models are correlation centered, and as practitioners price
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the products with market standard Gaussian copula model, discussions on pairwise

correlation between underlying companies will continue to be popular in the future.

To examine the effects of correlation factors within our model, we follow the ap-

proach proposed by Hull, Predescu and White (2009). The correlation parameter  is

set to be embedded in the Brownian Motion process , so we now have  as

 =  +

q
1− 2 (16)

Here  indicates the  company and is a common Wiener process for all underlying

names. Above equation adapt idiosyncratic correlation assumptions for each of the

individual companies, so detailed correlation assumptions can be extended for more

complex cases of correlation centered growth rates.

Thus, the growth rate process is driven by the macro market momentum together

with an individual process. In this way, one may apply the match to name correla-

tion factors of selected data with our proposed dynamic structure model and observe

the change due to difference in correlations. Further, for time dependent simulation

processes, our framework may well house the time dependent correlation assumption as

the asset growth rate for each time step is distinguished from the previous steps.

4.3.3 Time Dependent Derivative Pricing

Since the 2007 credit crisis, the issue of hedging credit risk with other derivatives is

heated more than ever before. As a dynamic model, our approach, can be used to

perform continuous time cash flow analysis as well as valuation of option-type securities.

Early structural models such as Merton (1973) and Black and Cox (1976) consider

credit default products as exotic options in which the default trigger condition is set

as the strike price which makes an option exercisable. In their context, the asset value

follows a log-normal process and the derivative is priced as follows. The well known

solution of a vanilla call option is

 =  (0)Φ (1)−−Φ (1) 

where (0) is the asset value at time 0,  the option strike,  the risk-free interest rate

and  the maturity, with 1 and 2 defined by

1 =
ln(0)− ln + ( + 22)


√


and 2 = 1 − 
√
 
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Having the time dependent asset value () one is able to derive the time  call

and/or put price for an option-type contract on credit default-able assets. Further,

calculations of the Greek factors are straight forward and time dependent sensitivity

analysis is made easy. Thus, time dependent hedging strategies can be developed on

expected cash flow and sensitivity analysis from the Greeks.

5 Conclusions

In this paper we propose a new dynamic approach for structural credit risk modeling.

We believe that a time dependent pricing technique is vital as the whole market is facing

the challenge of actively managed and/or replicated credit portfolios. The growth rate

model that we suggest is easy to calibrate as inputs are either given directly or easily

derived from market data. It turns out that our framework can accommodate both

bearish and bullish credit markets and fits market quotes reasonably well. Obviously,

further extensions can be made to analyse the effects of many other factors which

are exogenous to our model, such as the pairwise correlation and interest rates. Our

philosophy though was to keep everything relatively simple and “old school”, since

in the recent climate market practitioners are increasingly returning to basics when

exposed to credit risk.

References

[1] Albanese, C., Chen O., Dalessandro A., and A. Vidler (2006). Dynamic Credit Correlation

Modeling. DefaultRisk.com: www.defaultrisk.com/pp_corr_75.htm

[2] Altman, E., Brady B., Resti A., and A. Sironi (2005). The Link Between Default and

Recovery Rates: Theory, Empirical Evidence and Implications. The Journal of Business,

78, 2203-2228.

[3] Anson M., Fabozzi F., Choudhry M, and R. Chen (2004). Credit Derivatives: Instru-

ments, Applications and Pricing. Wiley.

[4] Baxter, M. (2006). Levy Process Dynamic Modelling of Single-name Cred-

its and CDO Tranches. Nomura Fixed Income Quant Group, working paper:

www.nomura.com/resources/europe/pdfs/cdomodelling.pdf

45

QASS, Vol. 4 (2), 2010, 29-48

© qass.org.uk



[5] Bennani, N. (2005). The Forward Loss Model: A Dynamic Term Struc-

ture Approach for the Pricing of Portfolio Credit Risk. DefaultRisk.com:

www.defaultrisk.com/pp_crdrv_95.htm

[6] Black, F., and J. Cox (1976). Valuing Corporate Securities: Some Effects of Bond Inden-

ture Provisions. Journal of Finance, 31, 351-367.

[7] Black, F., and M. Scholes (1973). The Pricing of Options and Corporate Liabilities.

Journal of Political Economy, 81, 637-654.

[8] Bluhm, C., and L. Overbeck (2007). Structured Credit Portfolio Analysis, Baskets and

CDOs. Chapman & Hall/CRC.

[9] Burtschell, X., Gregory J., and J. P. Laurent (2009). A Comparative Analysis of CDO

Pricing Models. Journal of Derivatives, 16, 9-37

[10] Chapovsky, A., Rennie A., and P. A. C. Tavares (2007). Stochastic Intensity Modelling

for Structured Credit Exotics. International Journal of Theoretical and Applied Finance,

10, 633-652.

[11] Choudhry, M. (2005). Fixed-income Securities and Derivatives Handbook. Bloomberg

Press, Princeton.

[12] Deacon, J. (2003). Global Securitisation and CDOs. Wiley.

[13] Duffie, D., and N. Garleanu (2001). Risk and Valuation of Collateralized Debt Obliga-

tions. Financial Analysts Journal, 57, 41-59.

[14] Duffie, D., and K. J. Singleton (1999). Modelling Term Structures of Defaultable Bonds.

Review of Financial Studies, 12, 687-720.

[15] Errais, E., Giesecke K., and L. Goldberg (2006). Pricing Credit

from the Top Down Using Affine Point Processes. Available at

www.barra.com/support/library/credit/pricing_credit_from_top_down.pdf

[16] Graziano, G. D., and L. C. G. Rogers (2009). A Dynamic Approach to the Modelling of

Correlation Credit Derivatives Using Markov Chains. International Journal of Theoretical

and Applied Finance, 12, 45-62.

46

QASS, Vol. 4 (2), 2010, 29-48

© qass.org.uk



[17] Guegan, D., and J. Houdain (2005). Collateralized Debt Obligations Pricing and Factor

Models: A New Methodology using Normal Inverse Gaussian Distributions. Default-

Risk.com: www.defaultrisk.com/pp_crdrv_93.htm

[18] Heath, D., Jarrow R., and A. Morton (1992). Bond Pricing and the Term Structure of

Interest Rates: A New Methodology for Contingent Claims Valuation. Econometrica, 60,

77-105.

[19] Herkommer, D. (2007). Recovery Rates in Credit Default Models Theory and Ap-

plication to Corporate Bonds. Goethe University, Finance Department WP 1339:

www.finance.uni-frankfurt.de/wp/1339.pdf

[20] Hu, Y-T., and W. Perraudin (2002). The Dependence of Recovery Rates and Defaults.

DefaultRisk.com: www.defaultrisk.com/pp_model_34.htm

[21] Hull, J., Predescu M., and A. White (2009). The Valuation of Correlation-Dependent

Credit Derivatives Using a Structural Model. Journal of Credit Risk, 6, 99-132.

[22] Hull, J., and A. White (2004). Valuation of CDO and an nth to Default CDS without

Monte Carlo Simulation. Journal of Derivatives, 12, 8-23.

[23] Hull, J., and A. White (2008). Dynamic Models of Portfolio Credit Risk: A Simplifed

Approach. Journal of Derivatives, 15, 9-28.

[24] Hurd, T., and A. Kuznetsov (2006). Fast CDO Computations in the Affine Markov Chain

Model. DefaultRisk.com: www.defaultrisk.com/pp_crdrv_65.htm

[25] Jarrow, R., Lando D., and S. Turnbull (1997). A Markov Model for the Term Structure

of Credit Risk Spreads. The Review of Financial Studies, 10, 481-523.

[26] Jarrow, R., and S. Turnbull (1995). Pricing Derivatives on Financial Securities Subject

to Credit Risk. The Journal of Finance, 50, 53-85.

[27] Kalemanova, A., Schmid B., and R. Werner (2007). The Normal Inverse Gaussian Dis-

tribution for Synthetic CDO Pricing. The Journal of Derivatives, 14, 80-94.

[28] Lando, D. (1998). On Cox Processes and Credit Risky Securities. Derivatives Research,

2, 99-120.

47

QASS, Vol. 4 (2), 2010, 29-48

© qass.org.uk



[29] Laurent, J-P., and J. Gregory (2005). Basket Default Swaps, CDOs and Factor Copulas.

The Journal of Risk, 7 (4).

[30] Li, D. (2000). On Default Correlation: A Copula Function Approach. Journal of Fixed

Income, 9, 43-54.

[31] Loffler, G., and P. Posch (2007). Credit Risk Modelling using Excel and VBA. Wiley.

[32] Longstaff, F., and A. Rajan (2006). An Empirical Analysis of the Pricing of Collateralized

Debt Obligations. NBER WP W12210.

[33] Merton, R. (1973). On the Pricing of Corporate Debt: The Risk Structure of Interest

Rates. Massachusetts Institute of Technology (MIT), Sloan School of Management WP

684-73.

[34] Schonbucher, P. (2006). Portfolio Losses and the Term Structure of Loss Transition

Rates: A New Methodology for Pricing Portfolio Credit Derivatives. DefaultRisk.com:

www.defaultrisk.com/pp_model_74.htm

[35] Sidenius, J., Piterbarg V., and L. Andersen (2008). A New Framework for Dynamic Credit

Portfolio Loss Modeling. International Journal of Theoretical and Applied Finance, 11,

163-197.

[36] Vasicek, O. (1991). Limiting Loan Loss Probability Distribution. DefaultRisk.com:

www.defaultrisk.com/pp_model_61.htm

[37] Walker, M. (2009). Simultaneous Calibration to a Range of Portfolio Credit Derivatives

with a Dynamic Discrete-Time Multi-Step Markov Loss Model. International Journal of

Theoretical and Applied Finance, 12, 633-662.

[38] Yu, LZ. (2003). Pricing Credit Risk as ParAsian Options with Sto-

chastic Recovery Rate of Corporate Bonds. CiteSeerx digital library:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.892

[39] Zhou, C. (1997). A Jump-Diffusion Approach to Modeling Credit Risk and Valuing De-

faultable Securities. DefaultRisk.com: www.defaultrisk.com/pp_model_03.htm

48

QASS, Vol. 4 (2), 2010, 29-48

© qass.org.uk


